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bstract

A 1D model based on physical and electrochemical processes of a lithium ion cell is used to describe constant current and hybrid pulse power
haracterization (HPPC) data from a 6 Ah cell designed for hybrid electric vehicle (HEV) application. An approximate solution method for the
iffusion of lithium ions within active material particles is formulated using the finite element method and implemented in the previously developed
D electrochemical model as an explicit difference equation. Reaction current distribution and redistribution processes occurring during discharge
nd current interrupt, respectively, are driven by gradients in equilibrium potential that arise due to solid diffusion limitations. The model is

xtrapolated to predict voltage response at discharge rates up to 40 C where end of discharge is caused by negative electrode active material surface
oncentrations near depletion. Simple expressions are derived from an analytical solution to describe solid-state diffusion limited current for short
uration, high-rate pulses.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Hybrid electric vehicles (HEVs) use a battery as a high-rate
ransient power source cycled about a relatively fixed state-of-
harge (SOC). In the literature however, most fundamentally
ased battery models focus on predicting energy available at var-
ous constant current discharge rates beginning from the fully
harged state [1–3]. Cell phone, laptop, and electric vehicle bat-
eries are typically discharged over some hours and it is common
n the literature to term discharge rates of only 4 C (four times the

anufacturer’s nominal one hour Ah rating, lasting on the order
f 15 min) as “high-rate”. In contrast, Hitachi states that their
.5 Ah HEV cell can sustain 40 C discharge from 50% SOC for
reater than 5 s. Phenomenological models capable of capturing
ltra-high-rate transient behavior are needed to understand and

stablish the operating limitations of HEV cells.

In the mathematical modeling of HEV cells, equivalent cir-
uit models are often employed [4–7] and validated in either
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ransient; Solid-state diffusion

he time or frequency domain [8–10]. While the simplicity of
uch models makes them attractive, unlike fundamental models
hey provide no insight into underlying physical cell limita-
ions. Many good works do exist in the fundamental modeling
f lithium ion cells, though validated models are only available
or cell phone, laptop, and electric vehicle batteries. We briefly
utline some of those works.

Doyle et al. [11] developed a 1D model of the lithium ion cell
sing porous electrode and concentrated solution theories. The
odel is general enough to adopt a wide range of active mate-

ials and electrolyte solutions with variable properties and has
een applied in various studies [1,2,12–14]. In [1], Doyle et al.
alidated the model against constant current data (with rates up
o 4 C) from similar cells of three different electrode thicknesses.
olid and electrolyte phase mass transport properties were esti-
ated to fit measured data, and in particular, the solid diffusion

oefficient for LixC6 (Ds− = 3.9 × 10−10 cm2 s−1) was chosen to
apture rate dependent end of discharge. Interfacial resistance

as used as an adjustable parameter to improve the model’s fit

cross the three cell designs. More recently, the 1D isothermal
odel was validated against a 525 mAh Sony cell phone battery

2]. The authors used a large Bruggeman exponent correcting for

mailto:cxw31@psu.edu
dx.doi.org/10.1016/j.jpowsour.2006.03.050
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Nomenclature

as active surface area per electrode unit volume
(cm2 cm−3)

A electrode plate area (cm2)
A state matrix in linear state variable model state

equation
B input matrix in linear state variable model state

equation
c concentration of lithium in a phase (mol cm−3)
C state matrix in linear state variable model output

equation
D diffusion coefficient of lithium species (cm2 s−1)
D input matrix in linear state variable model output

equation
F Faraday’s constant (96,487 C mol−1)
i0 exchange current density of an electrode reaction

(A cm−2)
I applied current (A)
jLi reaction current resulting in production or con-

sumption of Li (A cm−3)
L width (cm)
p Bruggeman exponent
Q capacity (A s)
r radial coordinate (cm)
R universal gas constant (8.3143 J mol−1 K−1)
Rf film resistance on an electrode surface (� cm2)
Rs radius of solid active material particles (cm)
RSEI solid/electrolyte interfacial flim resistance

(� cm2)
s Laplace variable (rad s−1)
t time (s)
t0+ transference number of lithium ion with respect

to the velocity of solvent
T absolute temperature (K)
Ts time step (s)
U open-circuit potential of an electrode reaction (V)
x negative electrode solid phase stoichiometry and

spatial coordinate (cm)
y positive electrode solid phase stoichiometry

Greek symbol
αa, αc anodic and cathodic transfer coefficients for an

electrode reaction
δ penetration depth (cm)
ε volume fraction or porosity of a phase
η surface overpotential of an electrode reaction (V)
κ conductivity of an electrolyte (S cm−1)
κD diffusional conductivity of a species (A cm−1)
σ conductivity of solid active materials in an elec-

trode (S cm−1)
τ dimensionless time for solid-state diffusion
φ volume-averaged electrical potential in a phase

(V)
ω frequency (rad s−1)

Subscripts
e electrolyte phase
s solid phase
s,avg average, or bulk solid phase
s,e solid phase at solid/electrolyte interface
s,max solid phase theoretical maximum limit
sep separator region
− negative electrode region
+ positive electrode region

Superscripts
eff effective
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Li lithium species

ortuosity in the negative electrode (p = 3.3) leading to the con-
lusion that the battery was electrolyte phase limited. Though
he model successfully predicted end of discharge for rates up
o 3 C, the voltage response during the first minutes of discharge
id not match and was found to be sensitive to values chosen for
nterfacial resistances.

While the majority of the modeling literature is devoted to
oltage prediction during quasi-steady state constant current
ischarge and charge, we note several discussions of transient
henomena relevant to HEV cells. Neglecting effects of con-
entration dependent properties (that generally change mod-
stly with time), the three transient processes occurring in a
attery are double-layer capacitance, electrolyte phase diffu-
ion, and solid phase diffusion. Due to the facile kinetics of
ithium ion cells, Ong and Newman [15] demonstrated that
ouble-layer effects occur on the millisecond time scale and can
hus be neglected for current pulses with frequency less than

100 Hz.
Unlike double-layer capacitance, electrolyte and solid phase

iffusion both influence low-frequency voltage response and the
elative importance of various diffusion coefficient values can
e judged either in the frequency domain [16,17] or through
nalysis of characteristic time scales [13,14]. Fuller et al. [14]
tudied the practical consequence of these transient phenom-
na by modeling the effect of relaxation periods interspersed
etween discharge and charge cycles of various lithium ion
ells. Voltage relaxation and the effect of repeated cycling were
nfluenced very little by electrolyte concentration gradients and
ere primarily attributed to equalization of local state of charge

cross each electrode. Non-uniform active material concentra-
ions would relax via a redistribution process driven by the
orresponding non-uniform open-circuit potentials across each
lectrode.

This work extends a previously developed 1D electrochem-
cal model [3] to include transient solid phase diffusion and
ses it to describe constant current, pulse current, and driving

ycle test data from a 6 Ah lithium ion cell designed and built
or the DOE FreedomCAR program. The model highlights sev-
ral effects attributable to solid-state diffusion relevant to pulse
peration of HEV batteries.
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ig. 1. Schematic of 1D (x-direction) electrochemical cell model with coupled
D (r-direction) solid diffusion submodel.

. Model formulation

The 1D lithium ion cell model depicted in Fig. 1 consists of
hree domains—the negative composite electrode (with LixC6
ctive material), separator, and positive composite electrode
with a metal oxide active material). During discharge, lithium
ons inside of solid LixC6 particles diffuse to the surface where
hey react and transfer from the solid phase into the electrolyte
hase. The positively charged ions travel via diffusion and
igration through the electrolyte solution to the positive elec-

rode where they react and insert into metal oxide solid particles.
he separator, while conductive to ions, is an electronic insula-
or, thus forcing electrons to follow an opposite path through an
xternal circuit or load.

The composite electrodes, consisting of active material and
lectrolyte solution (along with lesser amounts of conductive

d

o
N

able 1
overning equations of lithium ion cell model

onservation equations Bo

harge

Electrolyte phase
∂

∂x

(
κeff ∂

∂x
φe

)
+ ∂

∂x

(
κeff

D
∂

∂x
ln ce

)
+ jLi = 0 (1) ∂φ

∂x

Solid phase
∂

∂x

(
σeff ∂

∂x
φs

)
− jLi = 0 (2) −σ

pecies

Electrolyte phase
∂(εece)

∂t
= ∂

∂x

(
Deff

e
∂

∂x
ce

)
+ 1 − t0+

F
jLi (3) ∂ce

∂x

Solid phase
∂cs

∂t
= Ds

r2

∂

∂r

(
r2 ∂cs

∂r

)
(4) ∂cs

∂r
er Sources 161 (2006) 628–639

ller and binder, not shown in Fig. 1), are modeled using
orous electrode theory, meaning that the solid and electrolyte
hases are treated as superimposed continua without regard to
icrostructure. Electrolyte diffusion and ionic conductivity are

orrected for tortuosity resulting from the porous structure using
ruggeman relationships, Deff

e = Deε
p
e and κeff = κε

p
e , respec-

ively.
Electronic conductivity is corrected as a function of each

lectrode’s solid phase volume fraction, σeff = σεs. Mathemati-
al equations governing charge and species conservation in the
olid and electrolyte phases are summarized in Table 1.

Distribution of liquid phase potential, φe, is described by
onic and diffusional conductivity, Eq. (1), with diffusional con-
uctivity:

eff
D = 2RTκeff

F
(t0+ − 1)

(
1 + d ln f±

d ln ce

)
(5)

escribed by concentrated solution theory [3,11]. Distribution
f solid phase potential, φs, is governed by Ohm’s law, Eq.
2). The reaction current density, jLi, sink/source term appears
ith opposite signs in the charge conservation equations for the

wo phases, maintaining electroneutrality on both a local and
lobal basis. Reaction rate is coupled to phase potentials by the
utler–Volmer kinetic expression:

Li = asi0

{
exp

[
αaF

RT

(
η− RSEI

as
jLi

)]

−exp

[
−αcF

RT

(
η− RSEI

as
jLi

)]}
, (6)

ith overpotential, η, defined as the difference between the
olid and liquid phase potentials, minus the open-circuit poten-
ial of the solid or η=φs −φe − U. Exchange current den-
ity, i0, exhibits modest dependency on electrolyte and solid
urface concentrations, ce and cs,e, respectively, according to
0 = (ce)αa (cs,max − cs,e)αa (cs,e)αc . A resistive film layer, RSEI,
ay be included to model a finite film at the surface of elec-

rode active material particles which reduces the overpotential’s

riving force [18].

Solid-state transport of Li within spherical LixC6 and metal
xide active material particles is described by diffusion, Eq. (4).
ote that the macroscopic cell model requires only the value of

undary conditions

e
∣∣
x=0

= ∂φe
∂x

∣∣
x=L = 0

eff−
∂φs
∂x

∣∣
x=0

= σeff+
∂φs
∂x

∣∣
x=L−+Lsep+L+

= I
A
,

∂φs
∂x

∣∣
x=L−

= ∂φs
∂x

∣∣
x=L−+Lsep

= 0

∣∣
x=0

= ∂ce
∂x

∣∣
x=L = 0∣∣

r=0
= 0, Ds

∂cs
∂r

∣∣
r=Rs

= − jLi

asF
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ation for 32 s, 22.5 A charge for 10 s, followed by open-circuit
relaxation as shown in the top window of Fig. 4. The onset
of constant current discharge and charge portions of the HPPC
profile are accompanied by brief (0.1 s) high-rate pulses to
K. Smith, C.-Y. Wang / Journal o

olid phase concentration at the particle surface, cs,e = cs|r=Rs ,
o evaluate local equilibrium potential, U, and exchange current
ensity, i0. Authors have used various approaches in their treat-
ent of Eq. (4), including an analytical solution implemented as
Duhamel superposition integral [11], a parabolic concentration
rofile model [19], and a sixth-order polynomial profile model
20]. In the present work we approximate Eq. (4) using the finite
lement method as described in Appendix A. Spatial discretiza-
ion with five linear elements unevenly spaced along the particle
adius provides sufficient resolution of cs,e(t) as a function of
Li(t) at both short and long times. The various approaches to
olid-state diffusion modeling are contrasted and discussed in
ection 4.

For numerical solution, the 1D macroscopic domain is
iscretized into approximately 70 control volumes in the x-
irection. The solid diffusion submodel (Appendix A) is sep-
rately applied within each control volume of the negative and
ositive electrodes. The four governing equations (Table 1) are
olved simultaneously for field variables ce, cs,e, φe, and φs.
urrent is used as the model input and boundary conditions
re therefore applied galvanostatically. Cell terminal voltage is
etermined by the equation:

= φs|x=L − φs|x=0 − Rf

A
I, (7)

here Rf represents a contact resistance between current collec-
ors and electrodes.

. Model parameterization

Low-rate static discharge/charge, hybrid pulse power char-
cterization (HPPC), and transient driving cycle data were pro-
ided by the DOE FreedomCAR program for a 276 V nominal
EV battery pack consisting of 72 serially connected cells. Data
as collected according to Freedom CAR test procedures [4].
or the purpose of HEV systems integration modeling [21], we
ere tasked to build a mathematical model of single cell of that
ack. We make no attempt to account for cell-to-cell variability
nd present all data on a single cell basis by dividing measured
ack voltage by 72. Due to the proprietary nature of the proto-
ype FreedomCAR battery we were unable to disassemble cells
o measure geometry, composition, etc., and thus adopt values
rom the literature and adjust them as necessary to fit the data.
y expressing capacity of the negative and positive electrodes
s

− = εs−(L−A)(cs,max−)(�x)F,

+ = εs+(L+A)(cs,max+)(�y)F, (8)

ow-rate capacity data provides a rough gauge of electrode
olume and stoichiometry cycling range, assuming electrode
omposition and electrode mass ratio values from Ref. [2]. This
ass ratio is later shown to result in a well-balanced cell at both
igh and low rates. Discharge capacity at the 1 C (6 A) rate was
easured to be 7.2 Ah and we define stoichiometry reference

oints for 0% and 100% SOC (listed in Table 2) on a 7.2 Ah
asis.

F
(

ig. 2. Empirical open-circuit potential relationships for negative and positive
lectrodes.

The negative electrode active material almost certainly con-
ists of graphite (LixC6) given its widespread use in reversible
ithium ion cells. Shown in Fig. 2, we use the empirical corre-
ation for LixC6 open-circuit potential, U−, from Ref. [2]. The
ositive electrode active material could consist of LiyMn2O4,
iyCoO2, LiyNiO2, or some combination of metal oxides. Listed

n Table 2, we fit our own correlation for U+ by subtracting U−
rom the cell’s measured open-circuit voltage.

Fig. 3 compares the model using parameters listed in Table 2
o 1 C (6 A) constant current discharge and charge data. This
ow-rate data set is relatively easy to fit as it deviates little from
pen-circuit voltage.

In contrast, the voltage perturbation of the transient HPPC
ata set is more difficult to fit. The HPPC test procedure, defined
n [4], consists of a 30 A discharge for 18 s, open-circuit relax-
ig. 3. Model validation versus constant current charge/discharge data at 1 C
6 A) rate.



632 K. Smith, C.-Y. Wang / Journal of Power Sources 161 (2006) 628–639

Table 2
FreedomCAR cell model parameters

Parameter Negative electrode Separator Positive electrode

Design specifications (geometry and volume fractions)
Thickness, δ (× 10−4 cm) 50 25.4 36.4
Particle radius, Rs (× 10−4 cm) 1 1
Active material volume fraction, εs 0.580 0.500
Polymer phase volume fraction, εp 0.048 0.5 0.110
Conductive filler volume fraction, εf 0.040 0.06
Porosity (electrolyte phase volume fraction), εe 0.332 0.5 0.330

Solid and electrolyte phase Li+ concentration
Maximum solid phase concentration cs,max (× 10−3 mol cm−3) 16.1 23.9
Stoichiometry at 0% SOC, x0%, y0% 0.126 0.936
Stoichiometry at 100% SOC, x100%, y100% 0.676 0.442
Average electrolyte concentration, ce (× 10−3 mol cm−3) 1.2 1.2 1.2

Kinetic and transport properties
Exchange current density, i0 (× 10−3 A cm−2) 3.6 2.6
Charge-transfer coefficients, αa, αc 0.5, 0.5 0.5, 0.5
SEI layer film resistance, RSEI (� cm2) 0 0
Solid phase Li diffusion coefficient, Ds (× 10−12 cm2 s−1) 2.0 3.7
Solid phase conductivity, σ (S cm−1) 1.0 0.1
Electrolyte phase Li+ diffusion coefficient, De (× 10−6 cm2 s−1) 2.6 2.6 2.6
Bruggeman porosity exponent, p 1.5 1.5 1.5
Electrolyte phase ionic conductivity, κ (S cm−1) κ = 0.0158ce exp(0.85c1.4

e ) κ = 0.0158ce exp(0.85c1.4
e ) κ = 0.0158ce exp(0.85c1.4

e )
Electrolyte activity coefficient, f± 1.0 1.0 1.0
Li+ transference number, t0+ 0.363 0.363 0.363

Parameter Value

Equilibrium potential
Negative electrode, U− (V) U−(x) = 8.00229 + 5.0647x− 12.578x1/2 − 8.6322 × 10−4x−1 + 2.1765 × 10−5x3/2 −

0.46016 exp[15.0(0.06 − x)] − 0.55364 exp[−2.4326(x− 0.92)]
Positive electrode, U+ (V) U+(y) = 85.681y6 − 357.70y5 + 613.89y4 − 555.65y3 + 281.06y2 − 76.648y −

0.30987 exp(5.657y115.0) + 13.1983

Plate area-specific parameters
Electrode plate area, A (cm2) 10452
Current collector contact resistance, Rf (� cm2) 20

Fig. 4. Model validation versus HPPC test data. SOC labeled on 6 Ah-basis
per FreedomCAR test procedures. SOC initial conditions used in 7.2 Ah-basis
model are 41.7%, 50.0%, 58.3%, 66.6%, and 75.0%.
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stimate high-frequency resistance. Unable to decouple values
f SEI layer resistance from contact film resistance (or cell-
o-cell interconnect resistance for that matter), we fit ohmic
erturbation using a contact film resistance of Rf = 20� cm2.

Neglecting double-layer capacitance for reasons noted ear-
ier, the only transient phenomena accounted for in the gov-
rning equations (here and in other work [14]) are electrolyte
iffusion and solid diffusion. A parametric study showed that
hile it was possible to match the observed voltage drop at

he end of the HPPC 30 A discharge by lowering De several
rders of magnitude from a baseline value of 2.6 × 10−6 cm2 s−1

2], the voltage drop at short times was too severe. Signifi-
ant decrease in De also caused predicted voltage to diverge
rom the measured voltage over time due to severe electrolyte
oncentration gradients. While recent LiPF6-based electrolyte
roperty measurements [22] show diffusion coefficient, De, and
ctivity coefficient, f±, both exhibiting moderate concentration
ependency, it is beyond the scope of this work to consider

nything beyond the first approximation of constant De and
nity f±.

In investigating solid-state diffusion transient effects, we
ote that measured voltage response only allows observation
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was used to mimic a power profile recorded from a Toyota Prius
HEV on a federal urban (FUDS) driving cycle. Only the first
150 s are shown, though results are representative of the entire
test.
K. Smith, C.-Y. Wang / Journal o

f characteristic time t = R2
s/Ds and will not provide Rs and

s independently. SEM images, such as that shown by Dees
t al. [23] (their Fig. 1) of a LiNi0.8Co0.15Al0.05O2 compos-
te electrode, often show bulk or “secondary” active material
articles (with radii ∼5 �m) having finer “primary” particles
with radii ∼0.5 �m) attached to the surface. Dees achieved
ood description of LiNi0.8Co0.15Al0.05O2 impedance data in
he 0.01–1 Hz frequency range using a characteristic diffusion
ength of 1.0 �m. As active material composition and structure
re unknown for the present cell, we adopt this value as the
article radius in both electrodes.

Though LixC6 is often reported to have more sluggish dif-
usion than common positive electrode active materials, a para-
etric study on Ds− using the transient solid diffusion model

ound no value capable of describing both the ∼0.047 V drop
n cell voltage from 2 to 20 s of the HPPC test as well as the
low voltage relaxation upon open-circuit at 20 s. Assuming for
he moment that the ∼0.047 V drop is caused solely by solid
iffusion limitations in the negative electrode, we estimate that
urface concentration cs,e− would need to fall from its initial
alue by 4.3 × 10−4 mol cm−3 (a substantial amount) to cause
he observed 0.047 V change in U−. Wang and Srinivasan [24]
ive an empirical formula for the evolution of a concentration
radient within a spherical particle subjected to constant surface
ux as

s,e(t) − cs,avg(t) = jLi −Rs

5asFDs

[
1 − exp

(
−20

3

√
Dst

Rs

)]
.

(9)

t steady state (where the exponential term goes to zero) and
ith the assumption of uniform reaction current density, jLi− =
/AL−, we manipulate Eq. (9) to obtain a rough estimate of the
egative electrode diffusion coefficient:

s− = Rs

5Fas�cs−
I

AL−
(10)

f 1.6 × 10−12 cm2 s−1. A corresponding characteristic time
hereby the operand of the exponential term in Eq. (9) equals
nity is 140 s. Our conclusion is that, while a negative elec-
rode solid diffusion coefficient of Ds− = 1.6 × 10−12 cm2 s−1

ight cause the cell voltage to drop ∼0.047 V, that voltage
rop would take much longer to develop than what we observe
n the data. Repeating calculations for concentration gradient

agnitude and characteristic time under a variety of condi-
ions revealed that the observed transient behavior might be
escribed by solid-state diffusion in the negative electrode if
he slope ∂U−/∂cs− were roughly eight times steeper. This
s indeed the case in the positive electrode, where at 50%
OC the open-circuit potential function has almost seven times
reater slope with respect to concentration than the negative
lectrode. Chosen via parametric study, final values of Ds−
2.0 × 10−12 cm2 s−1) and Ds+ (3.7 × 10−12 cm2 s−1) represent

PPC voltage dynamics in Fig. 4 quite well, although we note

hey are dependent upon our choice of particle radius. Were we
o chose particle radii of 5 �m rather than 1 �m, our diffusion
oefficient would be 25 times higher to maintain characteristic

F
o
c

ig. 5. Nominal model compared to models where limitations of electrolyte
hase, negative electrode solid phase, and positive electrode solid phase diffusion
ave been individually (not sequentially) removed.

ime t = R2
s/Ds and match the voltage dynamics of the HPPC

est.
Fig. 5 quantifies voltage polarization resulting from diffu-

ional transport by individually raising each diffusion coefficient
y five or more orders of magnitude such that it no longer affects
ell voltage response. Despite comparable values of Ds− and
s+, the positive electrode polarizes transient voltage response
ore significantly due to its stronger open-circuit potential cou-

ling.
Fig. 6 compares model voltage prediction to data taken on

he FreedomCAR battery whereby an ABC-150 battery tester
ig. 6. Model validation versus transient FUDS cycle HEV data. Power profile
f data mimics that recorded from a Toyota Prius (passenger car) HEV run on a
hassis dynamometer.
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ig. 7. Distribution of reaction current across cell for first 30 s of HPPC test at
8.3% SOC.

. Results and discussion

.1. Reaction dynamics

Despite aforementioned uncertainties in cell design and
hoice of model parameters, the model is still useful in eluci-
ating pulse discharge and charge dynamics resulting from solid
hase transport limitations. As a basis for the subsequent discus-
ion we use simulation results from the first 30 s of the 58.3%
OC HPPC case (whose voltage response is denoted with circles

n Fig. 4).
Approximately one second into the test, a 30 A discharge

urrent is applied resulting in the step change in local reaction
urrent, jLi, shown in Fig. 7. At the onset of the step change,
olid phase surface concentrations are uniform and the initial
istribution of reaction across each electrode is governed by rel-
tive magnitudes of exchange current density, electrolyte phase
onductivity, and solid phase conductivity. The solid phase is a
uch better conductor than the electrolyte phase and the reaction

s distributed such that Li+ ions favor a path of least resistance,
raveling the shortest distance possible in the electrolyte phase.
egative electrode reaction is less evenly distributed than pos-

tive electrode reaction predominantly due to the greater solid
hase conductivity of the negative electrode (σ− = 1.0 S cm−1

ersus σ+ = 0.1 S cm−1).
As a consequence of the initial peak in reaction current at

he separator interface, Li surface concentration changes most
apidly at that location in each electrode, as shown in Fig. 8.
he effect is more pronounced in the negative electrode where

he larger initial peak in current density quickly causes a gra-
ient in active material surface concentration, ∂cs,e/∂x, to build
cross that electrode. Local equilibrium potential, U−, falls most
apidly at the negative electrode/separator interface, penalizing
urther reaction at that location and driving the redistribution of
eaction shown in Fig. 7. As discharge continues, progressively
ess reaction occurs at the separator interface and more reaction

ccurs at the current collector interface.

Positive electrode reaction current exhibits similar redistri-
ution, though less significant than in the negative electrode
or two reasons. First, at the onset of the 30 A discharge,

4

c

ig. 8. Distribution of active material surface concentration across cell for first
0 s of HPPC test at 58.3% SOC.

nitial reaction distribution is already more uniform in the
ositive electrode. Second, and more significant, the positive
lectrode open-circuit potential function is almost seven times
ore sensitive to changes in concentration than the negative

lectrode function at 58.3% SOC. Small changes in positive
lectrode active material surface concentration significantly
enalize reaction, and for this reason, redistribution of reaction
ue to solid diffusion limitations occurs much quicker in that
lectrode.

Redistribution of Li also occurs upon cell relaxation at the
nd of the 18 s-long 30 A discharge. Fig. 7 shows a second step
hange in transfer current density around 19 s, appearing qual-
tatively as the mirror image of the step change at 1 s when
he galvanostatic load was first applied. At locations near the
eparator, a recharging process begins while at locations near
he current collector, discharge continues even after the load is
emoved. The process is driven by the gradient in local equilib-
ium potential, ∂U/∂x (directly related to the solid phase surface
oncentration gradient, ∂cs,e/∂x) and continues until surface con-
entrations, cs,e, are once again evenly distributed. During this
edistribution process the net balance of reaction across each
lectrode is zero.

Relaxation reaction redistribution is less significant in the
ositive electrode, where only a minimal solid phase surface
oncentration gradient, ∂cs,e/∂x, arose during the 30 A discharge.
he process lasts on the order of 10 s, compared to several min-
tes for the negative electrode. In both electrodes, solid phase
ulk concentrations rise and fall at roughly the same rate as
urface concentrations throughout the redistribution process,
ndicating that the time scale of reaction redistribution is much
aster than solid phase diffusion. Localized concentration gra-
ients within individual solid particles (from bulk to surface),
cs/∂r, relax so slowly that the 63 s long pulse power test amounts
o little more than a transient discharge and charge on the sur-
ace of the active material particles with inner bulk regions
naffected.
.2. Rate capability

Fig. 9 presents model-predicted constant current discharge
apability from 50% SOC. Shown in the bottom window of



K. Smith, C.-Y. Wang / Journal of Power Sources 161 (2006) 628–639 635

F
t
f

F
o
w
i
a
E
t
a
c
p
p
x
m
t

f
a
t
a
5
t
t
d
g
b
b
e
m
b
i
h
t

4

m

F
p

p

r̄

j

i

w
t

T

c

w
d
m
d
r
n

m
c
the present model to cause end of discharge as the negative elec-
trode nears depletion, is calculated by evaluating Eq. (14) at
r̄ = 1. Penetration depth, δ, providing a measure of active mate-
ig. 9. Solid phase surface concentration (top), minimum electrolyte concen-
ration (middle), and time (bottom) at end of galvanostatic discharge for rates
rom 10 to 40 C.

ig. 9, a 40 C rate current (240 A) can be sustained for just
ver 6 s before voltage decays to the 2.7 V minimum. The top
indow of Fig. 9 shows active material surface concentration

n the negative (left axis) and positive (right axis) electrodes
t the end of discharge across the range of discharge rates.
lectrode-averaged rather than local values of surface concen-

ration are presented to simplify the discussion. The electrodes
re fairly well balanced, indicated by end of discharge surface
oncentrations near depletion and saturation in the negative and
ositive electrodes, respectively. End of discharge voltage is
redominantly negative electrode-limited as stoichiometries of
= cs,e/cs,max− < 0.05 causes a rapid rise in U−. Surface active
aterial utilization decreases slightly with increasing C-rate due

o increased ohmic voltage drop.
In the present model, electrolyte Li+ transport is sufficiently

ast that electrolyte depletion does not play a limiting role at
ny discharge rate from 50% SOC. In the worst case of 30 C,
he minimum value of local electrolyte concentration, occurring
t the positive electrode/current collector interface, is around
0% of average concentration, ce,0. For rates less than 30 C,
he reduced current level results in lesser electrolyte concen-
ration gradients, while for rates greater than 30 C, the shorter
uration of discharge time results in a smaller concentration
radient at end of discharge. If we induce sluggish diffusion
y reducing De (a similar effect may be induced in cell design
y reducing porosity), electrolyte concentration in the positive
lectrode comes closer to depletion with the worst case mini-
um value of ce occurring at lesser current rates. Lowering De

y one order of magnitude for example, results in a battery lim-
ted in the 10–20 C range by electrolyte phase transport, with
igher and lower current rates still controlled by solid phase
ransport.

.3. Solid-state diffusion limited current
Under solid phase transport limitations, simple relationships
ay be derived to predict maximum current available for a given

r
fi
i

ig. 10. Dimensionless distribution of concentration within an active material
article at various times during galvanostatic (dis)charge.

ulse time. Substituting dimensionless variables:

= r

Rs
, τ = Dst

R2
s
, c̄s(r̄, τ) = cs(r̄, τ) − cs,0

cs,max
,

¯Li = jLiRs

DsasFcs,max
(11)

nto Eq. (4) yields the dimensionless governing equation:

∂c̄s

∂τ
= 1

r̄2

∂

∂r̄

(
r̄2 ∂c̄s

∂r̄

)
(12)

ith initial condition c̄s(r̄, τ = 0) = 0 ∀ r̄ and boundary condi-
ions:

∂c̄s

∂r̄

∣∣∣∣
r̄=0

= 0,
∂c̄s

∂r̄

∣∣∣∣
r̄=1

= j̄Li. (13)

he solution given by Carslaw and Jaeger [25] is

¯s(r̄, τ)= − j̄Li

[
3τ+ 1

10
(5r̄2 − 3)−2

r̄

∞∑
n=1

sin(λnr̄) exp(−λ2
nτ)

λ2
n sin(λn)

]
,

(14)

here the eigenvalues are roots of λn = tan(λn). Fig. 10 shows
istribution of Li concentration along the radius of an active
aterial particle during galvanostatic discharge or charge for

imensionless times ranging from τ = 10−6 to 10−1 which, for
eference, correspond to current pulses lasting 0.05–500 s using
egative electrode parameters from Table 2.

Surface concentration and depth of penetration into the active
aterial, both of practical interest for HEV pulse-type operation,

an be obtained from Eq. (14). Surface concentration, shown for
ial accessible for short duration pulse events, is calculated by
nding the point along the radius where the concentration profile

s more or less equal to the initial condition. A 99% penetration
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Table 3
Empirical formulae fit to solid-state diffusion PDE exact solution, Eq. (14)

1% error bounds

Dimensionless surface concentration
c̄s,e

j̄Li
= −1.139

√
τ (16) 0 < τ < 1 × 10−4

c̄s,e

j̄Li
= −1.122

√
τ − 1.25τ (17) 0 < τ < 8 × 10−2

Dimensionless 99% penetration depth
δ̄ = 3.24

√
τ (18) 0 < τ < 1 × 10−3√
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δ̄ = 3.23 τ + 1.89τ (19) 0 < τ < 2 × 10−2

epth, δ= Rs − r, is defined using the location r resulting in a
oot of the formula:

c̄s(r̄, τ)

c̄s(1, τ)
= 1 − a (15)

ith a = 0.99. Expressed as a fraction of total radius, dimension-
ess penetration depth, δ̄ = δ/Rs, is a function of dimensionless
ime only.

Empirical expressions for dimensionless surface concentra-
ion, c̄s,e, and dimensionless penetration depth, δ̄, are fit to the
esults of Eq. (14) and presented in Table 3. Functions of the
orm f (τ) = C

√
τ provide good resolution at short times of

< 10−3, corresponding in our model to pulses lasting fewer
han ∼5 s. Resolution may be extended one to two orders of mag-
itude in τ by using functions of the form f (τ) = C

√
τ +Dτ.

he latter functions are plotted versus the exact solution (14) in
ig. 11.

Eq. (17) in Table 3 may be used in lieu of the present elec-
rochemical model to predict negative electrode surface concen-
rations for pulses shorter than 400 s, or, conversely, to predict
imiting currents at rates greater than ∼9 C caused by depleted

ctive material surface concentration at end of discharge. By
ombining Eqs. (11) and (17) under the assumption of uniform
urrent density, jLi− = I/AL−, we obtain an empirical relation-

ig. 11. Dimensionless active material surface concentration and penetration
epth versus time (top). Percent error in empirical correlations of the form
(τ) = C

√
τ +Dτ (bottom).
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hip for surface concentration as a function of current and time:

cs,e(t)

cs,max−
= cs,0

cs,max−
− I

Rs−
L−ADs−as−Fcs,max−

×
[

1.122

√
Ds−t
Rs−

+ 1.25
Ds−t
R2

s−

]
(20)

alid for t < 0.08Ds/R
2
s . Alternatively, given initial stoichiom-

try, x0, and surface stoichiometry at end of discharge, xs,e final,
he maximum current available for a pulse discharge lasting t
econds will be

max = (x0 − xs,e final)

⎛
⎝L−Aas−Fcs,max−

1.122√
Ds−

√
t + 1.25

Rs− t

⎞
⎠ . (21)

hile the theoretical maximum current will be obtained under
he condition xs,e final = 0, i.e. complete surface depletion, Fig. 9
howed the present model to exhibit an end of discharge surface
toichiometry around 0.03, with some rate dependency. Under
niform initial conditions, the initial stoichiometry, x0, is sim-
ly a function of SOC. For a recently charged or discharged
attery with nonuniform initial concentration, a better predic-
ion of maximum pulse current may be obtained by replacing x0
n Eq. (21) with a stoichiometry averaged across the penetration
epth or “pulse-accessible” region [26].

.4. Suitability of solid-state diffusion approximations for
ell modeling

Introduced in Section 2 and detailed in Appendix A, the
resent work utilizes a fifth-order finite element approximation
or solid-state diffusion (4) and incorporates that submodel into
he 1D electrochemical model as a finite difference equation,
hat is, local values of cs,e are calculated using values of cs,e and
Li from the previous five time steps:

[k]
s,e = f ([c[k−1]

s,e , . . . , c[k−5]
s,e ], [jLi[k], . . . , jLi[k−5]]). (22)

ere we compare the finite element submodel to the analyti-
al solution employed by Doyle et al. [11] and the polynomial
rofile model of Wang et al. [19]. Comparisons are made in
he frequency domain in order to remove the influence of a
articular type of input (pulse current, current step, constant cur-
ent, etc.) by taking the Laplace transform of each time domain
odel, expressing the input/output relationship as a transfer

unction in the Laplace variable s, and substituting s = jω to
alculate the complex impedance at frequency ω. A capital-
zed variable denotes that variable’s Laplace transform, that
s, Cs,e(s) = L{cs,e(t)}, and an overbar denotes a dimensionless
ariable. Define

¯ s,e(s) = Cs,e(s) − cs,0

cs,max
, J̄Li(s) = JLi(s)

Rs

asFDscs,max
,

2

¯ = ω
Rs

Ds
. (23)

n the Laplace domain, a compact analytical solution to Eq.
4) is readily available. The exact transfer function expressing



f Power Sources 161 (2006) 628–639 637

d
t

w

t
A
s

a

T
c
c
t
q
t
fi
t
τ

a

d
a
c
v
a
w
a
t

F
i
f

F
f
i

t
i
s

t
a
t
p
s
d
n
f
m

K. Smith, C.-Y. Wang / Journal o

imensionless surface concentration versus dimensionless reac-
ion current given by Jacobsen and West [28] is

C̄s,e(s)

J̄Li(s)
= tanh(ψ)

tanh(ψ) − ψ
, (24)

here ψ = Rs
√
s/Ds.

Doyle et al. [11] provide two analytical series solutions in
he time domain, one for short times and one for long times. In
ppendix B, we manipulate Doyle’s formulae to arrive at the

hort time transfer function:

C̄s,e(s)

J̄Li(s)
=

[
1 − ψ + 2ψ

∞∑
n=1

exp(−2nψ)

]−1

(25)

nd the long time transfer function:

C̄s,e(s)

J̄Li(s)
=

⎡
⎣−2

∞∑
n=1

ψ2

ψ2 + (nπRs)2

Ds

⎤
⎦

−1

. (26)

he frequency response (magnitude and phase angle) of trun-
ated versions of the short and long time transfer functions are
ompared to the exact transfer function (24) in Fig. 12, showing
he short time solution to provide good agreement at high fre-
uencies and the long time solution at low frequencies. Note that
he short time transfer function does not change much beyond the
rst term of the series. A good strategy to piece together Doyle’s

wo solutions is to use one term of the short time solution for
= Dst/R

2
s ≤ 0.1 (corresponding to ω̄ = 6 × 101 in Fig. 12)

nd around 100 terms of the long time solution for τ > 0.1.
Reaction current appears in Eq. (4) as a time depen-

ent boundary condition which Doyle accommodates using
Duhamel superposition integral. Numerical solution of this

onvolution-type integral requires that a time history of all pre-
ious step changes in surface concentration be held in memory

nd called upon at each time step to reevaluate the integral. So
hile the analytical solution is inarguably the most accurate

pproach, it can be expensive in terms of memory and computa-
ional requirements, particularly in situations requiring a small

ig. 12. Frequency response of short and long time analytical solutions used
n Ref. [11] for solid-state diffusion in spherical particles, compared to exact
requency response from Ref. [28].
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ig. 13. Frequency response of parabolic profile solid-state diffusion submodel
rom Ref. [19] and fifth-order finite element solid-state diffusion submodel (used
n this work), compared to exact frequency response from Ref. [28].

ime step but long simulation time (driving cycle simulations, for
nstance) or in situations requiring a large grid mesh (2D or 3D
imulations incorporating realistic cell geometry, for instance).

Approximate solutions to Eq. (4) are appropriate so long as
hey capture solid-state diffusion dynamics sufficiently fast for
particular investigation. Wang et al. [19] assume the concen-

ration profile within the spherical particle is described by a
arabolic profile cs(r, t) = A(t) + B(t)r2, and thus formulate a
olid-state diffusion submodel which correctly captures bulk
ynamics and steady state concentration gradient, but otherwise
eglects diffusion dynamics. Derived in Appendix C, the trans-
er function of the parabolic profile, or steady state diffusion,
odel is

C̄s,e(s)

J̄Li(s)
= 3

ψ2 + 1

5
. (27)

hown in Fig. 13 versus the exact transfer function (24), the
arabolic profile model is valid for low frequencies, ω̄ < 10,
r long times, τ = Dst/R

2
s > 0.6. Substituting values from the

resent model’s negative electrode (Ds− = 2.0 × 10−12 cm2 s−1,
s− = 1.0 × 10−4 cm), the parabolic profile model would cor-

ectly predict surface concentration only at times longer than
000 s. For electrochemical cells with sluggish solid-state diffu-
ion, the parabolic profile model will correctly capture low-rate
nd of discharge behavior, but is generally inappropriate in the
odeling of high rate (>2 C) or pulse type applications [27].
We find spatial discretization of Eq. (4) yields low-order

olid-state diffusion models with more accurate short time pre-
iction compared to polynomial profile models [20]. Recasting
he fifth-order finite element model from Appendix A in nondi-

ensional form:

C̄s,e(s)

J̄Li(s)
= asF

Ds

Rs

[
b1s

5 + b2s
4 + b3s

3 + b4s
2 + b5s+ b6

a1s5 + a2s4 + a3s3 + a4s2 + a5s+ a6

]
.

(28)

ig. 13 shows the present model to provide good approximation
f the exact transfer function (26) for ω̄ < 105, and thus be valid
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or dimensionless times τ > 6 × 10−5 (or t > 0.3 s for the present
odel’s negative electrode). Regardless of what solution tech-

ique is employed for solid-state diffusion in an electrochemical
ell model, if the objective is to match high-rate (∼40 C) pulse
ehavior and predict transport limitations on a short (∼5 s) time
cale, that technique must be valid at very short times.

. Conclusions

A fifth-order finite element model for transient solid-state
iffusion is incorporated into a previously developed 1D electro-
hemical model and used to describe low-rate constant current,
ybrid pulse power characterization, and transient driving cycle
ata sets from a lithium ion HEV battery. HEV battery models in
articular must accurately resolve active material surface con-
entration at very short dimensionless times. Requirements for
he present model are t = Dst/R

2
s ≈ 10−3 to predict 40 C rate

apability and τ≈ 2 × 10−5 to match current/voltage dynamics
t 10 Hz.

Dependent on cell design and operating condition, end of
ulse discharge may be caused by negative electrode solid phase
i depletion, positive electrode solid phase Li saturation, or
lectrolyte phase Li depletion. Simple expressions developed
ere for solid-state diffusion-limited current, applicable in either
lectrode, may aid in the interpretation of high-rate experimental
ata. While the present work helps to extend existing litera-
ure into the dynamic operating regime of HEV batteries, future
ork remains to fully characterize an HEV battery in the lab-
ratory and develop a fundamental model capable of matching
urrent/voltage data at very high rates.
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ppendix A

.1. Solid-state diffusion finite element model

The transient phenomenon of solid-state Li diffusion is incor-
orated into the previously developed macroscopic model of Gu
nd Wang [3]. While the governing Eq. (4) describes solid phase
oncentration along the radius of each spherical particle of active
aterial, the macroscopic model requires only the concentration

t the surface, cs,e(t), as a function of the time history of local
eaction current density, jLi(t).

We transform the PDE, Eq. (4), from spherical to planar
oordinates using the substitution v(r) = rcs(r) [28,29] and dis-

retize the transformed equation in the r-direction with n linear
lements. (The present model uses five elements with node
oints placed at {0.7,0.91,0.97,0.99,1.0}× Rs.) Transformed
ack to spherical coordinates, the discretized system is repre-
er Sources 161 (2006) 628–639

ented as ODEs in state space form:

ċs,1

ċs,2

...

ċs,n

⎤
⎥⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎢⎣
cs,1

cs,2

...

cs,n

⎤
⎥⎥⎥⎥⎦ + BjLi, cs,e ≈ C

⎡
⎢⎢⎢⎢⎣
cs,1

cs,2

...

cs,n

⎤
⎥⎥⎥⎥⎦ + DjLi,

(A.1)

here the n states of the system are the radially distributed val-
es of concentration cs,1, . . ., cs,n, at finite element node points
, . . ., n. For the linear PDE (4) with constant diffusion coeffi-
ient, Ds, the matrix A is constant and tri-diagonal.

The linear state space system (A.1) can also be expressed as
transfer function:

cs,e(s)

jLi(s)
≈ G(s) = b1s

n + b2s
n−1 + · · · + bn−1s+ bn

a1sn + a2sn−1 + · · · + an−1s+ an
(A.2)

ith constant coefficients ai and bi [30]. While either (A.1) or
A.2) could be numerically implemented using an iterative solu-
ion method, we exploit the linear structure of (4) and express the
ystem as a finite difference equation with explicit solution. To
iscretize (A.2) with respect to time, we perform a z-transform
sing Tustin’s method:

T(z) = G(s)|s=(2/Ts)((z−1)/(z+1)), (A.3)

esulting in an nth-order discrete transfer function:

cs,e(z)

jLi(z)
≈ GT(z) = h1z

n + h2z
n−1 + · · · + hn−1z+ hn

g1zn + g2zn−1 + · · · + gn−1z+ gn
(A.4)

ith constant coefficients hi and gi. Computation is thus reduced
o an explicit algebraic formula with minimal memory require-

ents. Solution for cs,e requires that local values of cs,e and jLi

e held from only the previous n − 1 time steps.

ppendix B

.1. Transfer functions of short and long time solid-state
iffusion analytical solutions

Doyle et al. [11] employ an analytical solution to Eq. (4) and
mbed it inside a Duhamel superposition integral to accommo-
ate the time dependent boundary condition. They provide two
ntegral expressions for the response of reaction current, jLi(τ),
o a step in surface concentration, �cs,e, at τ = 0, each in the
orm

(τ) = 1

asF

Rs

Ds

1

�cs,e

∫ τ

0
jLi(ζ) dζ. (B.1)

he short time expression (Eq. (B.6) of [11]) is√ [ ∞∑ ( 2 )

π

n=1
τ

−n
√
π

τ
erfc

(
n√
τ

)]
, (B.2)
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hile the long time expression (Eq. (B.5) of [11]) is

(τ) = 2

π2

∞∑
n=1

1

n2 [1 − exp(−n2π2τ)]. (B.3)

ittle detail is given in the derivation of these expressions. Dif-
erentiating Eqs. (B.1)–(B.3) with respect to τ and solving for
Li(τ), we recover short time solution:

Li(τ) = asF
Ds

Rs

[
1 − 1√

πτ
+ 2√

πτ

∞∑
n=1

exp

(
−n

2

τ

)]
�cs,e

(B.4)

nd long time solution:

Li(τ) = asF
Ds

Rs

[
−2

∞∑
n=1

exp(−n2π2τ)

]
�cs,e (B.5)

o longer in integral form. Taking the Laplace transform of Eqs.
B.4) and (B.5) and recognizing that the transform of the step
nput is Cs,e(s) =�cs,e/s, we find the short time transfer function:

JLi(s)

Cs,e(s)
= asF

Ds

Rs

[
1 − Rs

√
s

Ds
+ 2Rs

√
s

Ds

∞∑
n=1

×exp

(
−2nRs

√
s

Ds

)]
(B.6)

nd the long time transfer function:

JLi(s)

Cs,e(s)
= asF

Ds

Rs

[
−2

∞∑
n=1

s

s+ n2π2

]
. (B.7)

aking the reciprocal of Eqs. (B.6) and (B.7) and substituting
imensionless variables J̄Li, C̄s,e, and ψ yields Eqs. (25) and
26) respectively, used in Section 4.4.

ppendix C

.1. Transfer function of parabolic profile solid-state
iffusion approximate model

Wang et al. [19] assume concentration distribution within a
pherical active material particle to be described by a parabolic
rofile. Integrating the two parameter polynomial with respect
o Eq. (4), they reduce the problem of determining surface con-
entration, cs,e(t), as a function of reaction current, jLi(t), down
o the solution of one ODE:

∂cs,avg

∂t
= 3

asFRs
jLi (C.1)

nd one interfacial balance:

s,e − cs,avg = Rs

5asFDs
jLi. (C.2)
aking the Laplace transform of Eqs. (C.1) and (C.2) yields:

Cs,avg(s) = 3

asFRs
JLi(s) (C.3)

[

er Sources 161 (2006) 628–639 639

nd

s,e(s) − Cs,avg(s) = Rs

5asFDs
JLi(s), (C.4)

hich when combined to eliminate Cs,avg, provides the transfer
unction:
Cs,e(s)

JLi(s)
= 1

asF

Rs

Ds

[
3Ds

sR2
s

+ 1

5

]
. (C.5)

ubstituting dimensionless variables J̄Li, C̄s,e, and ψ into Eq.
C.5) yields Eq. (27), used in Section 4.4.
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